英文

这是一个重新训练的3层RoBERTa-wwm-ext-large模型。

中文BERT与整词掩码

为了进一步加速中文自然语言处理,我们提供了带有整词掩码的中文预训练BERT。

Pre-Training with Whole Word Masking for Chinese BERT 崔一鸣,车万翔,刘挺,秦兵,杨子卿,王世金,胡国平

这个代码库是基于以下代码库开发的: https://github.com/google-research/bert

您可能还对以下内容感兴趣,

HFL提供的更多资源: https://github.com/ymcui/HFL-Anthology

引用

如果您发现技术报告或资源对您的论文有用,请在您的论文中引用以下技术报告。

@inproceedings{cui-etal-2020-revisiting,
    title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
    author = "Cui, Yiming  and
      Che, Wanxiang  and
      Liu, Ting  and
      Qin, Bing  and
      Wang, Shijin  and
      Hu, Guoping",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
    pages = "657--668",
}
@article{chinese-bert-wwm,
  title={Pre-Training with Whole Word Masking for Chinese BERT},
  author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
  journal={arXiv preprint arXiv:1906.08101},
  year={2019}
 }