模型:
ikala/bloom-zh-3b-chat
任务:
文本生成它是基于Bloom-zh的3B模型,在2023年4月12日之前通过人类反馈网络应用收集的助理对话的人类示范进行微调的。
监督微调的序列长度为5120
有两个特殊的令牌用于标记用户和助手的开始回合:<|prompter|>和<|assistant|>。每个回合以</s>令牌结束。
输入示例提示:
<|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
输入以<|assistant|>令牌结束,表示模型应开始生成助手回复。
model | MMLU | BBH | Humaneval @10 |
---|---|---|---|
12312321 | 24.6 | 29.3 | 4.8 |
12313321 | 31.4 | 30.2 | 0.0 |
llama-7b (reference) | 30.9 | 27.6 | 10.3 |
命令:deepspeed trainer_sft.py --configs defaults bloom-zh-3b datasets --num_train_epochs 2 --deepspeed
数据:
datasets: - wmt2019_zh-en: max_val_set: 1000 max_train_set: 20000 - ted_trans_en-ja: max_val_set: 1000 max_train_set: 20000 - ted_trans_zh-ja: max_val_set: 1000 max_train_set: 20000 - ikala: input_file_path: export_conversation_v4.4.jsonl val_split: 0.05 - dolly15k: val_split: 0.05 - oasst_export: lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk,zh,ja,th,ko" input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz val_split: 0.05 - joke - gsm8k - webgpt
使用内部数据集ikala,如果要复现,请删除数据集
bloom-zh-3b:
bloom-zh-3b: dtype: fp16 log_dir: "bloom-zh_3b" learning_rate: 8e-6 model_name: ckip-joint/bloom-3b-zh output_dir: bloom_model_v4_3b weight_decay: 0.0 max_length: 5120 warmup_steps: 2000 gradient_checkpointing: true gradient_accumulation_steps: 32 per_device_train_batch_size: 1 per_device_eval_batch_size: 1 eval_steps: 500 save_steps: 1000 num_train_epochs: 8 save_total_limit: 2 deepspeed_config: configs/zero3_config_sft.json
零配置:
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "warmup_type": "linear", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }