模型:
imvladikon/wav2vec2-large-xlsr-53-hebrew
在下载的几个YouTube样本上进行了Fine-tuned facebook/wav2vec2-large-xlsr-53 。使用此模型时,请确保您的语音输入采样率为16kHz。
可以直接使用该模型(无需语言模型),如下所示:
import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "he", split="test[:2%]") # there is no common dataset for Hebrew, please, paste your data processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew") model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2])
可以按照以下方式对该模型在某些希伯来语测试数据上进行评估
import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "he", split="test") # there is no common dataset for Hebrew, please, paste your data wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew") model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew").to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果: