模型:
indobenchmark/indobert-lite-base-p2
IndoBERT 是基于BERT模型的印尼语最先进的语言模型。预训练模型使用掩码语言建模(MLM)目标和下一个句子预测(NSP)目标进行训练。
Model | #params | Arch. | Training data |
---|---|---|---|
indobenchmark/indobert-base-p1 | 124.5M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-base-p2 | 124.5M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-large-p1 | 335.2M | Large | Indo4B (23.43 GB of text) |
indobenchmark/indobert-large-p2 | 335.2M | Large | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-base-p1 | 11.7M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-base-p2 | 11.7M | Base | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-large-p1 | 17.7M | Large | Indo4B (23.43 GB of text) |
indobenchmark/indobert-lite-large-p2 | 17.7M | Large | Indo4B (23.43 GB of text) |
from transformers import BertTokenizer, AutoModel tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-lite-base-p2") model = AutoModel.from_pretrained("indobenchmark/indobert-lite-base-p2")
x = torch.LongTensor(tokenizer.encode('aku adalah anak [MASK]')).view(1,-1) print(x, model(x)[0].sum())
IndoBERT由Bryan Wilie*、Karissa Vincentio*、Genta Indra Winata*、Samuel Cahyawijaya*、Xiaohong Li、Zhi Yuan Lim、Sidik Soleman、Rahmad Mahendra、Pascale Fung、Syafri Bahar、Ayu Purwarianti进行训练和评估。
如果您使用了我们的工作,请引用:
@inproceedings{wilie2020indonlu, title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding}, author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti}, booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing}, year={2020} }