Text Embeddings by Weakly-Supervised Contrastive Pre-training .Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
此模型共有12层,嵌入尺寸为384。
下面是一个示例,用于对MS-MARCO段落排序数据集中的查询和文本进行编码。
import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-small-v2') model = AutoModel.from_pretrained('intfloat/e5-small-v2') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist())
请参阅我们在 https://arxiv.org/pdf/2212.03533.pdf 的论文。
查看 unilm/e5 以重现在 BEIR 和 MTEB benchmark 上的评估结果。
以下是使用sentence_transformers的示例。
from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-small-v2') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True)
包要求
pip install sentence_transformers~=2.2.2
贡献者: michaelfeil
1. 我是否需要在输入文本中添加前缀“查询:”和“文本:”?
是的,这是模型的训练方式,否则性能会降低。
这里有一些经验法则:
对于非对称任务,如开放式问答中的文本检索,使用相应的“查询:”和“文本:”前缀。
对于对称任务,如语义相似性、释义检索,使用“查询:”前缀。
如果要将嵌入用作特征,如线性探测分类、聚类等,则使用“查询:”前缀。
2.为什么我的复制结果与模型卡中报告的结果略有不同?
transformers和pytorch的不同版本可能会导致可忽略但非零的性能差异。
如果我们的论文或模型对您有帮助,请考虑如下引用:
@article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} }
此模型仅适用于英文文本。长文本将被截断为最多512个标记。