模型:
intfloat/multilingual-e5-small
Text Embeddings by Weakly-Supervised Contrastive Pre-training .Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
此模型共有12个层,嵌入大小为384。
下面是一个示例,用于对来自MS-MARCO排名数据集的查询和段落进行编码。
import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ", even for non-English texts. # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"] tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-small') model = AutoModel.from_pretrained('intfloat/multilingual-e5-small') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist())
此模型是从 microsoft/Multilingual-MiniLM-L12-H384 初始化的,并在混合多语言数据集上持续训练。它支持来自xlm-roberta的100种语言,但低资源语言可能会出现性能下降。
初始化: microsoft/Multilingual-MiniLM-L12-H384
第一阶段:弱监督对比预训练
Dataset | Weak supervision | # of text pairs |
---|---|---|
Filtered 1236321 | (title, page content) | 1B |
1237321 | (title, news content) | 400M |
1238321 | translation pairs | 2.4B |
1239321 | (hierarchical section title, passage) | 150M |
Filtered 12310321 | (comment, response) | 800M |
12311321 | (title, abstract) and citation pairs | 100M |
12312321 | (question, answer) | 50M |
12313321 | (input prompt, response) | 80M |
12314321 | - | 10M |
第二阶段:有监督微调
Dataset | Language | # of text pairs |
---|---|---|
12315321 | English | 500k |
12316321 | English | 70k |
12317321 | English | 60k |
12318321 | English | <300k |
12319321 | English | 500k |
12320321 | Chinese | 86k |
12321321 | English | 70k |
12322321 | English | 70k |
12323321 | English | 87k |
12324321 | English | 150k |
12325321 | 11 languages | 50k |
12326321 | 16 languages | 40k |
对于所有标记的数据集,我们只使用其训练集进行微调。
有关其他训练详细信息,请参阅我们在 https://arxiv.org/pdf/2212.03533.pdf 的论文。
Model | Avg MRR@10 | ar | bn | en | fi | id | ja | ko | ru | sw | te | th |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BM25 | 33.3 | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 |
mDPR | 16.7 | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 |
BM25 + mDPR | 41.7 | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 |
multilingual-e5-small | 64.4 | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 |
multilingual-e5-base | 65.9 | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 |
multilingual-e5-large | 70.5 | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 |
查看 unilm/e5 以重现对 BEIR 和 MTEB benchmark 的评估结果。
以下是与sentence_transformers配套使用的示例。
from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/multilingual-e5-small') input_texts = [ 'query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" ] embeddings = model.encode(input_texts, normalize_embeddings=True)
软件包要求
pip install sentence_transformers〜=2.2.2
贡献者: michaelfeil
1.是否需要在输入文本中添加前缀“query:”和“passage:”?
是的,这是模型的训练方式,否则将会导致性能下降。
以下是一些经验法则:
对于不对称任务(如开放式QA中的段落检索、特定信息检索),相应地使用“query:”和“passage:”。
对于对称任务(如语义相似性、双文本挖掘、近义词检索),使用“query:”前缀。
如果要将嵌入用作特征,如线性探测分类、聚类,请使用“query:”前缀。
2.为什么我重现的结果与模型卡中报告的结果略有不同?
不同版本的transformers和pytorch可能会导致微不足道但非零的性能差异。
如果您发现我们的论文或模型有帮助,请考虑如下引用:
@article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} }
长文本将被截断为最多512个标记。