模型:
intfloat/simlm-base-msmarco-finetuned
可在 https://arxiv.org/pdf/2207.02578 找到论文
可在 https://github.com/microsoft/unilm/tree/master/simlm 找到代码
在本文中,我们提出了SimLM(带有语言模型预训练的相似性匹配),一种简单而有效的稠密碎片检索预训练方法。它采用了一种简单的瓶颈架构,通过自监督预训练学习将碎片信息压缩成稠密向量。我们使用了一种替代语言建模目标,受ELECTRA启发,以提高样本效率并减少预训练和微调之间输入分布不匹配。SimLM只需要访问未标记的语料库,并且在没有标记数据或查询时更广泛适用。我们对几个大规模碎片检索数据集进行了实验,在各种设置下都显示出显著的改进。值得注意的是,SimLM甚至超过了像ColBERTv2这样的多向量方法,后者需要更多的存储成本。
Model | dev MRR@10 | dev R@50 | dev R@1k | TREC DL 2019 nDCG@10 | TREC DL 2020 nDCG@10 |
---|---|---|---|---|---|
RocketQAv2 | 38.8 | 86.2 | 98.1 | - | - |
coCondenser | 38.2 | 86.5 | 98.4 | 71.7 | 68.4 |
ColBERTv2 | 39.7 | 86.8 | 98.4 | - | - |
SimLM (this model) | 41.1 | 87.8 | 98.7 | 71.4 | 69.7 |
从我们的微调模型中获取嵌入:
import torch from transformers import AutoModel, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast from transformers.modeling_outputs import BaseModelOutput def l2_normalize(x: torch.Tensor): return torch.nn.functional.normalize(x, p=2, dim=-1) def encode_query(tokenizer: PreTrainedTokenizerFast, query: str) -> BatchEncoding: return tokenizer(query, max_length=32, padding=True, truncation=True, return_tensors='pt') def encode_passage(tokenizer: PreTrainedTokenizerFast, passage: str, title: str = '-') -> BatchEncoding: return tokenizer(title, text_pair=passage, max_length=144, padding=True, truncation=True, return_tensors='pt') tokenizer = AutoTokenizer.from_pretrained('intfloat/simlm-base-msmarco-finetuned') model = AutoModel.from_pretrained('intfloat/simlm-base-msmarco-finetuned') model.eval() with torch.no_grad(): query_batch_dict = encode_query(tokenizer, 'what is qa') outputs: BaseModelOutput = model(**query_batch_dict, return_dict=True) query_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :]) psg1 = 'Quality assurance (QA) is a process-centered approach to ensuring that a company or organization is providing the best possible products or services. It is related to quality control, which focuses on the end result, such as testing a sample of items from a batch after production.' psg1_batch_dict = encode_passage(tokenizer, psg1) outputs: BaseModelOutput = model(**psg1_batch_dict, return_dict=True) psg1_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :]) psg2 = 'The Super Bowl is typically four hours long. The game itself takes about three and a half hours, with a 30 minute halftime show built in.' psg2_batch_dict = encode_passage(tokenizer, psg2) outputs: BaseModelOutput = model(**psg2_batch_dict, return_dict=True) psg2_embedding = l2_normalize(outputs.last_hidden_state[0, 0, :]) # Higher cosine similarity means they are more relevant print(query_embedding.dot(psg1_embedding), query_embedding.dot(psg2_embedding))
@article{Wang2022SimLMPW, title={SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval}, author={Liang Wang and Nan Yang and Xiaolong Huang and Binxing Jiao and Linjun Yang and Daxin Jiang and Rangan Majumder and Furu Wei}, journal={ArXiv}, year={2022}, volume={abs/2207.02578} }