模型:
jonatasgrosman/wav2vec2-large-xlsr-53-arabic
精调的 facebook/wav2vec2-large-xlsr-53 在阿拉伯语上使用 Common Voice 6.1 和 Arabic Speech Corpus 的训练和验证样本。
感谢 OVHcloud 慷慨提供的GPU积分,这个模型已经进行了精调。
训练使用的脚本可以在此处找到: https://github.com/jonatasgrosman/wav2vec2-sprint
该模型可以直接使用(无需语言模型),如下所示...
使用 HuggingSound 库:
from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-arabic") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths)
编写自己的推理脚本:
import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ar" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence)
Reference | Prediction |
---|---|
ألديك قلم ؟ | ألديك قلم |
ليست هناك مسافة على هذه الأرض أبعد من يوم أمس. | ليست نالك مسافة على هذه الأرض أبعد من يوم الأمس م |
إنك تكبر المشكلة. | إنك تكبر المشكلة |
يرغب أن يلتقي بك. | يرغب أن يلتقي بك |
إنهم لا يعرفون لماذا حتى. | إنهم لا يعرفون لماذا حتى |
سيسعدني مساعدتك أي وقت تحب. | سيسئدنيمساعدتك أي وقد تحب |
أَحَبُّ نظريّة علمية إليّ هي أن حلقات زحل مكونة بالكامل من الأمتعة المفقودة. | أحب نظرية علمية إلي هي أن حل قتزح المكوينا بالكامل من الأمت عن المفقودة |
سأشتري له قلماً. | سأشتري له قلما |
أين المشكلة ؟ | أين المشكل |
وَلِلَّهِ يَسْجُدُ مَا فِي السَّمَاوَاتِ وَمَا فِي الْأَرْضِ مِنْ دَابَّةٍ وَالْمَلَائِكَةُ وَهُمْ لَا يَسْتَكْبِرُونَ | ولله يسجد ما في السماوات وما في الأرض من دابة والملائكة وهم لا يستكبرون |
该模型可以按照以下方式在Common Voice的阿拉伯语测试数据上进行评估。
import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ar" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
测试结果:
在下表中,我报告了模型的词错误率(WER)和字符错误率(CER)。我还对其他模型运行了上述评估脚本(于2021-05-14)。请注意,下表可能显示与已报告结果不同的结果,这可能是由于使用的其他评估脚本的某些特定性引起的。
Model | WER | CER |
---|---|---|
jonatasgrosman/wav2vec2-large-xlsr-53-arabic | 39.59% | 18.18% |
bakrianoo/sinai-voice-ar-stt | 45.30% | 21.84% |
othrif/wav2vec2-large-xlsr-arabic | 45.93% | 20.51% |
kmfoda/wav2vec2-large-xlsr-arabic | 54.14% | 26.07% |
mohammed/wav2vec2-large-xlsr-arabic | 56.11% | 26.79% |
anas/wav2vec2-large-xlsr-arabic | 62.02% | 27.09% |
elgeish/wav2vec2-large-xlsr-53-arabic | 100.00% | 100.56% |
如果您想引用这个模型,可以使用以下内容:
@misc{grosman2021xlsr53-large-arabic, title={Fine-tuned {XLSR}-53 large model for speech recognition in {A}rabic}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic}}, year={2021} }