模型:
jonatasgrosman/wav2vec2-large-xlsr-53-finnish
使用 Common Voice 6.1 和 CSS10 的训练和验证集,在芬兰语上进行了微调 facebook/wav2vec2-large-xlsr-53 。在使用该模型时,请确保语音输入的采样率为16kHz。
感谢 OVHcloud 慷慨赞助的GPU积分,使得此模型得以微调 :)
训练时使用的脚本可以在 https://github.com/jonatasgrosman/wav2vec2-sprint 找到
可以直接使用该模型(无需语言模型),如下所示...
使用 HuggingSound 库:
from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-finnish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths)
编写自己的推理脚本:
import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" SAMPLES = 5 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence)
Reference | Prediction |
---|---|
MYSTEERIMIES OLI OPPINUT MORAALINSA TARUISTA, ELOKUVISTA JA PELEISTÄ. | MYSTEERIMIES OLI OPPINUT MORALINSA TARUISTA ELOKUVISTA JA PELEISTÄ |
ÄÄNESTIN MIETINNÖN PUOLESTA! | ÄÄNESTIN MIETINNÖN PUOLESTA |
VAIN TUNTIA AIKAISEMMIN OLIMME MIEHENI KANSSA TUNTENEET SUURINTA ILOA. | PAIN TUNTIA AIKAISEMMIN OLIN MIEHENI KANSSA TUNTENEET SUURINTA ILAA |
ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA. | ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA |
ÄÄNESTIN MIETINNÖN PUOLESTA, SILLÄ POHJIMMILTAAN SIINÄ VASTUSTETAAN TÄTÄ SUUNTAUSTA. | ÄÄNESTIN MIETINNÖN PUOLESTA SILLÄ POHJIMMILTAAN SIINÄ VASTOTTETAAN TÄTÄ SUUNTAUSTA |
TÄHDENLENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT? | TÄHDEN LENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT |
SIITÄ SE TULEE. | SIITA SE TULEE |
NIIN, KUULUU KIROUS, JA KAUHEA KARJAISU. | NIIN KUULUU KIROUS JA KAUHEA KARJAISU |
ARKIT KUN OVAT NÄES ELEMENTTIRAKENTEISIA. | ARKIT KUN OVAT MÄISS' ELÄMÄTTEROKENTEISIÄ |
JÄIN ALUKSEN SISÄÄN, MUTTA KUULIN OVEN LÄPI, ETTÄ ULKOPUOLELLA ALKOI TAPAHTUA. | JAKALOKSEHÄN SISÄL MUTTA KUULIN OVENLAPI ETTÄ ULKA KUOLLALLA ALKOI TAPAHTUA |
可以使用以下方法对Common Voice中的芬兰语测试数据进行评估
import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
测试结果:
在下表中报告了模型的词错误率(WER)和字符错误率(CER)。我还在其他模型上(于2021-04-21)运行了上述评估脚本。请注意,下表可能显示与已报告结果不同的结果,这可能是由于使用的其他评估脚本的某些特定性引起的。
Model | WER | CER |
---|---|---|
aapot/wav2vec2-large-xlsr-53-finnish | 32.51% | 5.34% |
Tommi/wav2vec2-large-xlsr-53-finnish | 35.22% | 5.81% |
vasilis/wav2vec2-large-xlsr-53-finnish | 38.24% | 6.49% |
jonatasgrosman/wav2vec2-large-xlsr-53-finnish | 41.60% | 8.23% |
birgermoell/wav2vec2-large-xlsr-finnish | 53.51% | 9.18% |
如果想引用此模型,可以使用以下引用方式:
@misc{grosman2021xlsr53-large-finnish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}innish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-finnish}}, year={2021} }