英文

用于芬兰语语音识别的微调 XLSR-53 大模型

使用 Common Voice 6.1 CSS10 的训练和验证集,在芬兰语上进行了微调 facebook/wav2vec2-large-xlsr-53 。在使用该模型时,请确保语音输入的采样率为16kHz。

感谢 OVHcloud 慷慨赞助的GPU积分,使得此模型得以微调 :)

训练时使用的脚本可以在 https://github.com/jonatasgrosman/wav2vec2-sprint 找到

用法

可以直接使用该模型(无需语言模型),如下所示...

使用 HuggingSound 库:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-finnish")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)

编写自己的推理脚本:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fi"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
SAMPLES = 5

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
MYSTEERIMIES OLI OPPINUT MORAALINSA TARUISTA, ELOKUVISTA JA PELEISTÄ. MYSTEERIMIES OLI OPPINUT MORALINSA TARUISTA ELOKUVISTA JA PELEISTÄ
ÄÄNESTIN MIETINNÖN PUOLESTA! ÄÄNESTIN MIETINNÖN PUOLESTA
VAIN TUNTIA AIKAISEMMIN OLIMME MIEHENI KANSSA TUNTENEET SUURINTA ILOA. PAIN TUNTIA AIKAISEMMIN OLIN MIEHENI KANSSA TUNTENEET SUURINTA ILAA
ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA. ENSIMMÄISELLE MIEHELLE SAI KOLME LASTA
ÄÄNESTIN MIETINNÖN PUOLESTA, SILLÄ POHJIMMILTAAN SIINÄ VASTUSTETAAN TÄTÄ SUUNTAUSTA. ÄÄNESTIN MIETINNÖN PUOLESTA SILLÄ POHJIMMILTAAN SIINÄ VASTOTTETAAN TÄTÄ SUUNTAUSTA
TÄHDENLENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT? TÄHDEN LENTOJENKO VARALTA MINÄ SEN OLISIN TÄNNE KUSKANNUT
SIITÄ SE TULEE. SIITA SE TULEE
NIIN, KUULUU KIROUS, JA KAUHEA KARJAISU. NIIN KUULUU KIROUS JA KAUHEA KARJAISU
ARKIT KUN OVAT NÄES ELEMENTTIRAKENTEISIA. ARKIT KUN OVAT MÄISS' ELÄMÄTTEROKENTEISIÄ
JÄIN ALUKSEN SISÄÄN, MUTTA KUULIN OVEN LÄPI, ETTÄ ULKOPUOLELLA ALKOI TAPAHTUA. JAKALOKSEHÄN SISÄL MUTTA KUULIN OVENLAPI ETTÄ ULKA KUOLLALLA ALKOI TAPAHTUA

评估

可以使用以下方法对Common Voice中的芬兰语测试数据进行评估

import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fi"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")

测试结果:

在下表中报告了模型的词错误率(WER)和字符错误率(CER)。我还在其他模型上(于2021-04-21)运行了上述评估脚本。请注意,下表可能显示与已报告结果不同的结果,这可能是由于使用的其他评估脚本的某些特定性引起的。

Model WER CER
aapot/wav2vec2-large-xlsr-53-finnish 32.51% 5.34%
Tommi/wav2vec2-large-xlsr-53-finnish 35.22% 5.81%
vasilis/wav2vec2-large-xlsr-53-finnish 38.24% 6.49%
jonatasgrosman/wav2vec2-large-xlsr-53-finnish 41.60% 8.23%
birgermoell/wav2vec2-large-xlsr-finnish 53.51% 9.18%

引用

如果想引用此模型,可以使用以下引用方式:

@misc{grosman2021xlsr53-large-finnish,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}innish},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-finnish}},
  year={2021}
}