英文

在法语语音识别中进行微调的Fine-tuned XLS-R 1B模型

使用 Common Voice 8.0 MediaSpeech Multilingual TEDx Multilingual LibriSpeech Voxpopuli 的训练和验证数据对 facebook/wav2vec2-xls-r-1b 进行了法语微调。使用此模型时,请确保语音输入采样率为16kHz。

此模型经过 HuggingSound 工具进行了微调,并感谢 OVHcloud 慷慨赠与的GPU积分 :)

用法

使用 HuggingSound 库:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-french")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)

编写自己的推理脚本:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-french"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

评估命令

  • 对 mozilla-foundation/common_voice_8_0 用 test 分割进行评估
  • python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset mozilla-foundation/common_voice_8_0 --config fr --split test
    
  • 对 speech-recognition-community-v2/dev_data 进行评估
  • python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
    

    引用

    如果你想引用这个模型,你可以使用这个:

    @misc{grosman2021xlsr-1b-french,
      title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {F}rench},
      author={Grosman, Jonatas},
      howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-french}},
      year={2022}
    }