模型:
jsylee/scibert_scivocab_uncased-finetuned-ner
这是一个基于SciBERT进行训练的模型,用于识别药物名称和不良药物反应。
该模型将输入的标记分类为以下五个类别:
要开始使用此模型进行推理,只需设置一个NER pipeline,如以下所示:
from transformers import (AutoModelForTokenClassification, AutoTokenizer, pipeline, ) model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner" model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=5, id2label={0: 'O', 1: 'B-DRUG', 2: 'I-DRUG', 3: 'B-EFFECT', 4: 'I-EFFECT'} ) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer) print( model_pipeline ("Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug."))
SciBERT: https://huggingface.co/allenai/scibert_scivocab_uncased