模型:
kingabzpro/wav2vec2-large-xls-r-300m-Urdu
这个模型是在common_voice数据集上对 facebook/wav2vec2-xls-r-300m 进行微调得到的。在评估集上取得以下结果:
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
from datasets import load_dataset, Audio
from transformers import pipeline
model = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu"
data = load_dataset("mozilla-foundation/common_voice_8_0",
                     "ur",
                     split="test", 
                     streaming=True, 
                     use_auth_token=True)
sample_iter = iter(data.cast_column("path", 
                    Audio(sampling_rate=16_000)))
sample = next(sample_iter)
asr = pipeline("automatic-speech-recognition", model=model)
prediction = asr(sample["path"]["array"], 
                  chunk_length_s=5, 
                  stride_length_s=1)
prediction
# => {'text': 'اب یہ ونگین لمحاتانکھار دلمیں میںفوث کریلیا اجائ'}
 训练过程中使用了以下超参数:
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | 
|---|---|---|---|---|---|
| 3.6398 | 30.77 | 400 | 3.3517 | 1.0 | 1.0 | 
| 2.9225 | 61.54 | 800 | 2.5123 | 1.0 | 0.8310 | 
| 1.2568 | 92.31 | 1200 | 0.9699 | 0.6273 | 0.2575 | 
| 0.8974 | 123.08 | 1600 | 0.9715 | 0.5888 | 0.2457 | 
| 0.7151 | 153.85 | 2000 | 0.9984 | 0.5588 | 0.2353 | 
| 0.6416 | 184.62 | 2400 | 0.9889 | 0.5607 | 0.2370 | 
| Without LM | With LM (run ./eval.py ) | 
|---|---|
| 52.03 | 39.89 |