模型:
kinit/slovakbert-sentiment-twitter
这是一个基于SlovakBERT的情感分析分类器。该模型可以区分三个级别的情感:
该模型是使用SlovakBERT的 SlovakBERT 部分进行微调的[Mozetič et al 2016],包含50,000个手动标注的斯洛伐克语推文。因此,该模型是针对推文进行微调的,不建议将该模型用于通用情感分析。
该模型在 our paper 的评估中获得以下结果[Pikuliak et al 2021,第4.4节]:在原始数据集上的F1得分为0.67,普通评论数据集上的F1得分为0.58。
@inproceedings{pikuliak-etal-2022-slovakbert,
title = "{S}lovak{BERT}: {S}lovak Masked Language Model",
author = "Pikuliak, Mat{\'u}{\v{s}} and
Grivalsk{\'y}, {\v{S}}tefan and
Kon{\^o}pka, Martin and
Bl{\v{s}}t{\'a}k, Miroslav and
Tamajka, Martin and
Bachrat{\'y}, Viktor and
Simko, Marian and
Bal{\'a}{\v{z}}ik, Pavol and
Trnka, Michal and
Uhl{\'a}rik, Filip",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-emnlp.530",
pages = "7156--7168",
abstract = "We introduce a new Slovak masked language model called \textit{SlovakBERT}. This is to our best knowledge the first paper discussing Slovak transformers-based language models. We evaluate our model on several NLP tasks and achieve state-of-the-art results. This evaluation is likewise the first attempt to establish a benchmark for Slovak language models. We publish the masked language model, as well as the fine-tuned models for part-of-speech tagging, sentiment analysis and semantic textual similarity.",
}