模型:

l3cube-pune/indic-sentence-similarity-sbert

英文

IndicSBERT-STS

这是一个在STS数据集上训练的IndicSBERT模型( l3cube-pune/indic-sentence-bert-nli ),涵盖了十种主要的印度语言。该单一模型适用于英语、印地语、马拉地语、卡纳达语、泰米尔语、泰卢固语、古吉拉特语、奥里亚语、旁遮普语、马拉雅拉姆语和孟加拉语。该模型还具备跨语言能力。作为MahaNLP项目的一部分发布: https://github.com/l3cube-pune/MarathiNLP

在此处分享了通用的印度句子BERT模型: l3cube-pune/indic-sentence-bert-nli 。有关数据集、模型和基准结果的更多详细信息可以在我们的[论文]( https://arxiv.org/abs/2304.11434 )中找到

@article{deode2023l3cube,
  title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
  author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2304.11434},
  year={2023}
}

monolingual Indic SBERT paper multilingual Indic SBERT paper

下面列出了其他单语相似度模型: Marathi Similarity Hindi Similarity Kannada Similarity Telugu Similarity Malayalam Similarity Tamil Similarity Gujarati Similarity Oriya Similarity Bengali Similarity Punjabi Similarity Indic Similarity (multilingual)

下面列出了其他单语Indic句子BERT模型: Marathi SBERT Hindi SBERT Kannada SBERT Telugu SBERT Malayalam SBERT Tamil SBERT Gujarati SBERT Oriya SBERT Bengali SBERT Punjabi SBERT Indic SBERT (multilingual)

使用(Sentence-Transformers)

当您安装了 sentence-transformers 后,使用该模型变得很简单:

pip install -U sentence-transformers

然后您可以按照以下方式使用该模型:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

使用(HuggingFace Transformers)

如果没有 sentence-transformers ,您可以按照以下方式使用该模型:首先,将输入传递给变换器模型,然后必须在上下文化的词嵌入之上应用正确的汇集操作。

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)