一种在STS数据集上微调的MahaSBERT模型(l3cube-pune/marathi-sentence-bert-nli)。这是MahaNLP项目的一部分: https://github.com/l3cube-pune/MarathiNLP 在此处共享了支持主要印度语言和跨语言句子相似度的多语言版本 indic-sentence-similarity-sbert
有关数据集、模型和基准结果的更多详细信息,请参阅我们的[论文]( https://arxiv.org/abs/2211.11187 )
@article{joshi2022l3cubemahasbert, title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi}, author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11187}, year={2022} }
monolingual Indic SBERT paper multilingual Indic SBERT paper
下面列出了其他单语相似度模型: Marathi Similarity 、 Hindi Similarity 、 Kannada Similarity 、 Telugu Similarity 、 Malayalam Similarity 、 Tamil Similarity 、 Gujarati Similarity 、 Oriya Similarity 、 Bengali Similarity 、 Punjabi Similarity 、 Indic Similarity (multilingual)
下面列出了其他单语Indic句子BERT模型: Marathi SBERT 、 Hindi SBERT 、 Kannada SBERT 、 Telugu SBERT 、 Malayalam SBERT 、 Tamil SBERT 、 Gujarati SBERT 、 Oriya SBERT 、 Bengali SBERT 、 Punjabi SBERT 、 Indic SBERT (multilingual)
这是一个 sentence-transformers 模型:它将句子和段落映射到一个768维的密集向量空间,可以用于聚类或语义搜索等任务。
如果您已安装 sentence-transformers ,则可以轻松使用此模型:
pip install -U sentence-transformers
然后,您可以像这样使用模型:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings)
如果没有 sentence-transformers ,则可以像这样使用模型:首先,将输入通过变压器模型,然后必须在上下文化的词嵌入之上应用正确的池操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)