模型:

l3cube-pune/marathi-sentence-similarity-sbert

英文

MahaSBERT-STS

一种在STS数据集上微调的MahaSBERT模型(l3cube-pune/marathi-sentence-bert-nli)。这是MahaNLP项目的一部分: https://github.com/l3cube-pune/MarathiNLP 在此处共享了支持主要印度语言和跨语言句子相似度的多语言版本 indic-sentence-similarity-sbert

有关数据集、模型和基准结果的更多详细信息,请参阅我们的[论文]( https://arxiv.org/abs/2211.11187

@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}

monolingual Indic SBERT paper multilingual Indic SBERT paper

下面列出了其他单语相似度模型: Marathi Similarity Hindi Similarity Kannada Similarity Telugu Similarity Malayalam Similarity Tamil Similarity Gujarati Similarity Oriya Similarity Bengali Similarity Punjabi Similarity Indic Similarity (multilingual)

下面列出了其他单语Indic句子BERT模型: Marathi SBERT Hindi SBERT Kannada SBERT Telugu SBERT Malayalam SBERT Tamil SBERT Gujarati SBERT Oriya SBERT Bengali SBERT Punjabi SBERT Indic SBERT (multilingual)

这是一个 sentence-transformers 模型:它将句子和段落映射到一个768维的密集向量空间,可以用于聚类或语义搜索等任务。

用法(Sentence-Transformers)

如果您已安装 sentence-transformers ,则可以轻松使用此模型:

pip install -U sentence-transformers

然后,您可以像这样使用模型:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

用法(HuggingFace Transformers)

如果没有 sentence-transformers ,则可以像这样使用模型:首先,将输入通过变压器模型,然后必须在上下文化的词嵌入之上应用正确的池操作。

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)