模型:
lexlms/legal-roberta-large
该模型是从 RoBERTa 大型模型( https://huggingface.co/roberta-large )在 LeXFiles 语料库( https://huggingface.co/datasets/lexlms/lexfiles )上进行进一步预训练得到的。
LexLM(Base/Large)是我们最新发布的 RoBERTa 模型。在语言模型的开发上,我们遵循了一系列最佳实践:
需要更多信息。
该模型是在 LeXFiles 语料库( https://huggingface.co/datasets/lexlms/lexfiles )上进行训练的。有关评估结果,请参考我们的研究论文《LeXFiles and LegalLAMA:促进英文跨国法律语言模型开发》(Chalkidis*等人,2023)。
在训练过程中使用了以下超参数:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1322 | 0.05 | 50000 | 0.8690 |
1.0137 | 0.1 | 100000 | 0.8053 |
1.0225 | 0.15 | 150000 | 0.7951 |
0.9912 | 0.2 | 200000 | 0.7786 |
0.976 | 0.25 | 250000 | 0.7648 |
0.9594 | 0.3 | 300000 | 0.7550 |
0.9525 | 0.35 | 350000 | 0.7482 |
0.9152 | 0.4 | 400000 | 0.7343 |
0.8944 | 0.45 | 450000 | 0.7245 |
0.893 | 0.5 | 500000 | 0.7216 |
0.8997 | 1.02 | 550000 | 0.6843 |
0.8517 | 1.07 | 600000 | 0.6687 |
0.8544 | 1.12 | 650000 | 0.6624 |
0.8535 | 1.17 | 700000 | 0.6565 |
0.8064 | 1.22 | 750000 | 0.6523 |
0.7953 | 1.27 | 800000 | 0.6462 |
0.8051 | 1.32 | 850000 | 0.6386 |
0.8148 | 1.37 | 900000 | 0.6383 |
0.8004 | 1.42 | 950000 | 0.6408 |
0.8031 | 1.47 | 1000000 | 0.6314 |
@inproceedings{chalkidis-garneau-etal-2023-lexlms, title = {{LeXFiles and LegalLAMA: Facilitating English Multinational Legal Language Model Development}}, author = "Chalkidis*, Ilias and Garneau*, Nicolas and Goanta, Catalina and Katz, Daniel Martin and Søgaard, Anders", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics", month = july, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2305.07507", }