模型:
lmqg/flan-t5-large-squad-qag
此模型是在 lmqg/qag_squad (数据集名称:default)上通过 lmqg 进行问题和答案生成任务的fine-tune版本,基于 google/flan-t5-large 进行了训练。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/flan-t5-large-squad-qag") # model prediction question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/flan-t5-large-squad-qag") output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 93.49 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 66.06 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 93.32 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 66.15 | default | 12313321 |
QAAlignedRecall (BERTScore) | 93.68 | default | 12313321 |
QAAlignedRecall (MoverScore) | 66.06 | default | 12313321 |
在fine-tuning期间使用了以下超参数:
完整的配置信息可以在 fine-tuning config file 中找到。
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }