英文

lmqg/flan-t5-large-squad-qg-ae的模型卡

这个模型是 google/flan-t5-large 的fine-tuned版本,用于在 lmqg/qg_squad 上联合进行问题生成和答案提取(数据集名称:default)通过 lmqg

概述

用法

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/flan-t5-large-squad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • 使用transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/flan-t5-large-squad-qg-ae")

# answer extraction
answer = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

# question generation
question = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.")

评估

Score Type Dataset
BERTScore 90.74 default 12313321
Bleu_1 60.67 default 12313321
Bleu_2 44.72 default 12313321
Bleu_3 34.91 default 12313321
Bleu_4 27.86 default 12313321
METEOR 28.16 default 12313321
MoverScore 65.43 default 12313321
ROUGE_L 54.71 default 12313321
Score Type Dataset
QAAlignedF1Score (BERTScore) 92.24 default 12313321
QAAlignedF1Score (MoverScore) 64 default 12313321
QAAlignedPrecision (BERTScore) 91.98 default 12313321
QAAlignedPrecision (MoverScore) 64.01 default 12313321
QAAlignedRecall (BERTScore) 92.52 default 12313321
QAAlignedRecall (MoverScore) 64.08 default 12313321
Score Type Dataset
AnswerExactMatch 57 default 12313321
AnswerF1Score 68.65 default 12313321
BERTScore 91.11 default 12313321
Bleu_1 42.69 default 12313321
Bleu_2 37.66 default 12313321
Bleu_3 32.81 default 12313321
Bleu_4 28.74 default 12313321
METEOR 42.09 default 12313321
MoverScore 80.85 default 12313321
ROUGE_L 68.2 default 12313321

训练超参数

在fine-tuning期间使用了以下超参数:

  • 数据集路径:lmqg/qg_squad
  • 数据集名称:default
  • 输入类型:['paragraph_answer', 'paragraph_sentence']
  • 输出类型:['question', 'answer']
  • 前缀类型:['qg', 'ae']
  • 模型:google/flan-t5-large
  • 最大长度:512
  • 输出最大长度:32
  • 时期:6
  • 批次:8
  • 学习率:5e-05
  • fp16:False
  • 随机种子:1
  • 梯度积累步数:8
  • 标签平滑:0.15

完整的配置可在 fine-tuning config file 找到。

引用

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}