模型:
lmqg/mbart-large-cc25-dequad-qag
这个模型是在 lmqg/qag_dequad (数据集名称: default)上,通过 lmqg 对 facebook/mbart-large-cc25 进行了细调,用于问答对生成任务。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="de", model="lmqg/mbart-large-cc25-dequad-qag") # model prediction question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-dequad-qag") output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. ")
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 69.25 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 50.71 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 70.69 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 51.81 | default | 12313321 |
QAAlignedRecall (BERTScore) | 68.05 | default | 12313321 |
QAAlignedRecall (MoverScore) | 49.78 | default | 12313321 |
在微调过程中使用了以下超参数:
完整配置见 fine-tuning config file 。
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }