模型:
lmqg/mt5-small-esquad-qg-ae
该模型是在 google/mt5-small 的基础上通过 lmqg 在 lmqg/qg_esquad (数据集名称:default)上进行联合微调,用于问题生成和答案抽取。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg-ae") # answer extraction answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.") # question generation question = pipe("extract answers: <hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 83.39 | default | 12313321 |
Bleu_1 | 24.5 | default | 12313321 |
Bleu_2 | 16.48 | default | 12313321 |
Bleu_3 | 11.83 | default | 12313321 |
Bleu_4 | 8.79 | default | 12313321 |
METEOR | 21.66 | default | 12313321 |
MoverScore | 58.34 | default | 12313321 |
ROUGE_L | 23.13 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 79.06 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 54.49 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 76.46 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 52.96 | default | 12313321 |
QAAlignedRecall (BERTScore) | 81.94 | default | 12313321 |
QAAlignedRecall (MoverScore) | 56.21 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 57.63 | default | 12313321 |
AnswerF1Score | 75.31 | default | 12313321 |
BERTScore | 89.77 | default | 12313321 |
Bleu_1 | 35.18 | default | 12313321 |
Bleu_2 | 30.48 | default | 12313321 |
Bleu_3 | 26.92 | default | 12313321 |
Bleu_4 | 23.89 | default | 12313321 |
METEOR | 43.11 | default | 12313321 |
MoverScore | 80.64 | default | 12313321 |
ROUGE_L | 48.58 | default | 12313321 |
在微调过程中使用了以下超参数:
可在 fine-tuning config file 找到完整的配置信息。
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }