模型:
lmqg/mt5-small-itquad-qg
此模型是 google/mt5-small 在默认数据集(dataset_name: default)上通过 lmqg 进行问答生成任务的微调版本。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg") # model prediction questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg") output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 80.8 | default | 12313321 |
Bleu_1 | 22.78 | default | 12313321 |
Bleu_2 | 14.93 | default | 12313321 |
Bleu_3 | 10.34 | default | 12313321 |
Bleu_4 | 7.37 | default | 12313321 |
METEOR | 17.57 | default | 12313321 |
MoverScore | 56.79 | default | 12313321 |
ROUGE_L | 21.93 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 87.66 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 61.6 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 87.76 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 61.73 | default | 12313321 |
QAAlignedRecall (BERTScore) | 87.57 | default | 12313321 |
QAAlignedRecall (MoverScore) | 61.48 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 81.63 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 55.85 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 81.04 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 55.6 | default | 12313321 |
QAAlignedRecall (BERTScore) | 82.28 | default | 12313321 |
QAAlignedRecall (MoverScore) | 56.14 | default | 12313321 |
在微调过程中使用了以下超参数:
完整配置详见 fine-tuning config file 。
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }