英文

lmqg/t5-base-squad-qag 模型卡片

该模型是针对问答对生成任务在 lmqg/qag_squad 数据集(dataset_name: default)上通过 lmqg 进行微调的 t5-base 的版本。

概述

用法

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-squad-qag")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • 使用 transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-base-squad-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

评估

Score Type Dataset
QAAlignedF1Score (BERTScore) 93.34 default 12313321
QAAlignedF1Score (MoverScore) 65.78 default 12313321
QAAlignedPrecision (BERTScore) 93.18 default 12313321
QAAlignedPrecision (MoverScore) 65.96 default 12313321
QAAlignedRecall (BERTScore) 93.51 default 12313321
QAAlignedRecall (MoverScore) 65.68 default 12313321

训练超参数

在微调过程中使用了以下超参数:

  • dataset_path: lmqg/qag_squad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: ['qag']
  • model: t5-base
  • max_length: 512
  • max_length_output: 256
  • epoch: 17
  • batch: 8
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 8
  • label_smoothing: 0.15

完整的配置可以在 fine-tuning config file 找到。

引用

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}