英文

lmqg/t5-base-squad-qg 的模型卡

这个模型是通过在数据集 default 上使用 lmqg 进行问题生成任务而微调的 t5-base 的版本。

概述

用法

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-base-squad-qg")

# model prediction
questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
  • 使用transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-base-squad-qg")
output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

评估

Score Type Dataset
BERTScore 90.6 default 12313321
Bleu_1 58.69 default 12313321
Bleu_2 42.66 default 12313321
Bleu_3 32.99 default 12313321
Bleu_4 26.13 default 12313321
METEOR 26.97 default 12313321
MoverScore 64.74 default 12313321
ROUGE_L 53.33 default 12313321
  • 度量(问题和答案生成,参考答案):每个问题是从金标准答案生成的。 raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 95.42 default 12313321
QAAlignedF1Score (MoverScore) 70.63 default 12313321
QAAlignedPrecision (BERTScore) 95.48 default 12313321
QAAlignedPrecision (MoverScore) 70.92 default 12313321
QAAlignedRecall (BERTScore) 95.37 default 12313321
QAAlignedRecall (MoverScore) 70.34 default 12313321
Score Type Dataset
QAAlignedF1Score (BERTScore) 92.75 default 12313321
QAAlignedF1Score (MoverScore) 64.36 default 12313321
QAAlignedPrecision (BERTScore) 92.59 default 12313321
QAAlignedPrecision (MoverScore) 64.45 default 12313321
QAAlignedRecall (BERTScore) 92.93 default 12313321
QAAlignedRecall (MoverScore) 64.35 default 12313321
  • 度量(问题生成,领域外)
Dataset Type BERTScore Bleu_4 METEOR MoverScore ROUGE_L Link
12336321 amazon 90.75 6.57 22.37 60.8 24.81 12337321
12336321 new_wiki 93.02 11.09 27.23 65.97 29.59 12339321
12336321 nyt 92.2 7.77 25.16 63.83 24.56 12341321
12336321 reddit 90.59 5.68 21.3 60.23 21.96 12343321
12344321 books 88.14 0.49 13.51 55.65 9.44 12345321
12344321 electronics 87.71 0.0 16.53 55.77 13.48 12347321
12344321 grocery 87.46 0.0 16.24 56.59 10.26 12349321
12344321 movies 87.66 0.72 13.06 55.45 11.89 12351321
12344321 restaurants 87.83 0.0 13.3 55.45 10.7 12353321
12344321 tripadvisor 89.23 0.93 16.51 56.67 13.51 12355321

训练超参数

在微调过程中使用了以下超参数:

  • 数据集路径:lmqg/qg_squad
  • 数据集名称:default
  • 输入类型:['paragraph_answer']
  • 输出类型:['question']
  • 前缀类型:['qg']
  • 模型:t5-base
  • 最大长度:512
  • 输出最大长度:32
  • 迭代轮数:5
  • 批次大小:16
  • 学习率:0.0001
  • 使用混合精度训练:False
  • 随机种子:1
  • 梯度累积步数:4
  • 标签平滑:0.15

可以在 fine-tuning config file 找到完整的配置。

引用

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}