英文

lmqg/t5-large-squad-qag 的模型卡片

该模型是在 t5-large 的基础上对问题和答案生成任务进行微调的版本,使用 lmqg 进行训练,数据集为 lmqg/qag_squad (数据集名称:default)。

概述

用法

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-squad-qag")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • 使用 transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-large-squad-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

评估

Score Type Dataset
QAAlignedF1Score (BERTScore) 93.45 default 12313321
QAAlignedF1Score (MoverScore) 66.05 default 12313321
QAAlignedPrecision (BERTScore) 93.34 default 12313321
QAAlignedPrecision (MoverScore) 66.34 default 12313321
QAAlignedRecall (BERTScore) 93.57 default 12313321
QAAlignedRecall (MoverScore) 65.84 default 12313321

训练超参数

在微调过程中使用了以下超参数:

  • 数据集路径:lmqg/qag_squad
  • 数据集名称:default
  • 输入类型:['paragraph']
  • 输出类型:['questions_answers']
  • 前缀类型:['qag']
  • 模型:t5-large
  • 最大长度:512
  • 输出最大长度:256
  • epoch:12
  • 批次:8
  • 学习率:0.0001
  • fp16:False
  • 随机种子:1
  • 梯度累积步数:8
  • 标签平滑:0.15

完整的配置信息可以在 fine-tuning config file 中找到。

引用

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}