模型:
lmqg/t5-large-squad-qg
该模型是基于 t5-large 进行微调,用于生成问题的任务,数据集为 lmqg/qg_squad (数据集名称: default),通过 lmqg 进行训练。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/t5-large-squad-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/t5-large-squad-qg") output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 91 | default | 12313321 |
Bleu_1 | 59.54 | default | 12313321 |
Bleu_2 | 43.79 | default | 12313321 |
Bleu_3 | 34.14 | default | 12313321 |
Bleu_4 | 27.21 | default | 12313321 |
METEOR | 27.7 | default | 12313321 |
MoverScore | 65.29 | default | 12313321 |
ROUGE_L | 54.13 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 95.57 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 71.1 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 95.62 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 71.41 | default | 12313321 |
QAAlignedRecall (BERTScore) | 95.51 | default | 12313321 |
QAAlignedRecall (MoverScore) | 70.8 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 92.97 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 64.72 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 92.83 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 64.87 | default | 12313321 |
QAAlignedRecall (BERTScore) | 93.14 | default | 12313321 |
QAAlignedRecall (MoverScore) | 64.66 | default | 12313321 |
Dataset | Type | BERTScore | Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
---|---|---|---|---|---|---|---|
12336321 | amazon | 91.15 | 6.9 | 23.01 | 61.22 | 25.34 | 12337321 |
12336321 | new_wiki | 93.17 | 11.18 | 27.92 | 66.31 | 30.06 | 12339321 |
12336321 | nyt | 92.42 | 8.05 | 25.67 | 64.37 | 25.19 | 12341321 |
12336321 | 90.95 | 5.95 | 21.85 | 60.64 | 21.99 | 12343321 | |
12344321 | books | 87.94 | 0.0 | 11.97 | 55.48 | 9.87 | 12345321 |
12344321 | electronics | 87.86 | 0.84 | 16.16 | 56.05 | 14.13 | 12347321 |
12344321 | grocery | 87.5 | 0.76 | 15.4 | 56.76 | 10.5 | 12349321 |
12344321 | movies | 87.34 | 0.0 | 13.03 | 55.36 | 12.27 | 12351321 |
12344321 | restaurants | 88.25 | 0.0 | 12.45 | 55.91 | 11.93 | 12353321 |
12344321 | tripadvisor | 89.29 | 0.78 | 16.3 | 56.81 | 14.59 | 12355321 |
在微调期间使用了以下超参数:
完整的配置信息可以在 fine-tuning config file 中找到。
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }