模型:
lmqg/t5-small-squad-qg
这个模型是通过 lmqg 在 lmqg/qg_squad 上进行问题生成任务的微调版本的 t5-small 。
from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/t5-small-squad-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/t5-small-squad-qg") output = pipe("generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 90.2 | default | 12313321 |
Bleu_1 | 56.86 | default | 12313321 |
Bleu_2 | 40.59 | default | 12313321 |
Bleu_3 | 31.05 | default | 12313321 |
Bleu_4 | 24.4 | default | 12313321 |
METEOR | 25.84 | default | 12313321 |
MoverScore | 63.89 | default | 12313321 |
ROUGE_L | 51.43 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 95.14 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 69.79 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 95.19 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 70.09 | default | 12313321 |
QAAlignedRecall (BERTScore) | 95.09 | default | 12313321 |
QAAlignedRecall (MoverScore) | 69.51 | default | 12313321 |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 92.26 | default | 12313321 |
QAAlignedF1Score (MoverScore) | 63.83 | default | 12313321 |
QAAlignedPrecision (BERTScore) | 92.07 | default | 12313321 |
QAAlignedPrecision (MoverScore) | 63.92 | default | 12313321 |
QAAlignedRecall (BERTScore) | 92.48 | default | 12313321 |
QAAlignedRecall (MoverScore) | 63.82 | default | 12313321 |
Dataset | Type | BERTScore | Bleu_4 | METEOR | MoverScore | ROUGE_L | Link |
---|---|---|---|---|---|---|---|
12336321 | amazon | 89.94 | 5.45 | 20.75 | 59.79 | 22.97 | 12337321 |
12336321 | new_wiki | 92.61 | 10.48 | 26.21 | 65.05 | 28.11 | 12339321 |
12336321 | nyt | 91.71 | 6.97 | 23.66 | 62.86 | 23.03 | 12341321 |
12336321 | 89.57 | 4.75 | 19.8 | 59.23 | 20.1 | 12343321 | |
12344321 | books | 87.4 | 0.0 | 12.3 | 55.34 | 10.88 | 12345321 |
12344321 | electronics | 87.12 | 1.16 | 15.49 | 55.55 | 15.62 | 12347321 |
12344321 | grocery | 87.22 | 0.52 | 14.95 | 57.12 | 12.63 | 12349321 |
12344321 | movies | 86.84 | 0.0 | 12.11 | 55.01 | 12.63 | 12351321 |
12344321 | restaurants | 87.49 | 0.0 | 12.67 | 55.04 | 11.53 | 12353321 |
12344321 | tripadvisor | 88.4 | 1.46 | 15.53 | 55.91 | 14.24 | 12355321 |
在微调期间使用了以下超参数:
完整的配置可以在 fine-tuning config file 找到。
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }