英文

lmqg/t5-small-tweetqa-qa的模型卡片

该模型是根据 t5-small lmqg/qg_tweetqa (数据集名称:default)上进行问答任务微调的版本。

概述

用法

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-small-tweetqa-qa")

# model prediction
answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")
  • 使用transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-small-tweetqa-qa")
output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.")

评估

Score Type Dataset
AnswerExactMatch 38.49 default 12313321
AnswerF1Score 56.12 default 12313321
BERTScore 92.19 default 12313321
Bleu_1 45.54 default 12313321
Bleu_2 37.38 default 12313321
Bleu_3 29.91 default 12313321
Bleu_4 23.73 default 12313321
METEOR 27.89 default 12313321
MoverScore 74.57 default 12313321
ROUGE_L 49.86 default 12313321

训练超参数

在微调过程中使用了以下超参数:

  • dataset_path:lmqg/qg_tweetqa
  • dataset_name:default
  • input_types:['paragraph_question']
  • output_types:['answer']
  • prefix_types:None
  • model:t5-small
  • max_length:512
  • max_length_output:32
  • epoch:7
  • batch:64
  • lr:0.0001
  • fp16:False
  • random_seed:1
  • gradient_accumulation_steps:1
  • label_smoothing:0.0

完整的配置可以在 fine-tuning config file 找到。

引用

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}