模型:
m3hrdadfi/hubert-base-greek-speech-emotion-recognition
语言:
el许可:
apache-2.0# requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa
!git clone https://github.com/m3hrdadfi/soxan.git .
import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification, HubertForSpeechClassification import librosa import IPython.display as ipd import numpy as np import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "m3hrdadfi/hubert-base-greek-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = HubertForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs
path = "/path/to/disgust.wav" outputs = predict(path, sampling_rate)
[ {'Emotion': 'anger', 'Score': '0.0%'}, {'Emotion': 'disgust', 'Score': '99.2%'}, {'Emotion': 'fear', 'Score': '0.1%'}, {'Emotion': 'happiness', 'Score': '0.3%'}, {'Emotion': 'sadness', 'Score': '0.5%'} ]
下表总结了模型整体和每个类别获得的分数。
Emotions | precision | recall | f1-score | accuracy |
---|---|---|---|---|
anger | 1.00 | 0.92 | 0.96 | |
disgust | 0.92 | 1.00 | 0.96 | |
fear | 1.00 | 0.88 | 0.93 | |
happiness | 0.96 | 0.92 | 0.94 | |
sadness | 0.86 | 1.00 | 0.93 | |
Overal | 0.94 |
在 HERE 上发布 GitHub 问题。