模型:

m3hrdadfi/icelandic-ner-roberta

英文

IcelandicNER RoBERTa

这个模型是在冰岛语的MIM-GOLD-NER数据集上进行微调的。该 MIM-GOLD-NER 语料库在2018-2020年由 Reykjavik University 开发,涵盖了八种实体类型:

  • 日期
  • 地点
  • 杂项
  • 金钱
  • 组织
  • 百分比
  • 人名
  • 时间

数据集信息

Records B-Date B-Location B-Miscellaneous B-Money B-Organization B-Percent B-Person B-Time I-Date I-Location I-Miscellaneous I-Money I-Organization I-Percent I-Person I-Time
Train 39988 3409 5980 4351 729 5754 502 11719 868 2112 516 3036 770 2382 50 5478 790
Valid 7063 570 1034 787 100 1078 103 2106 147 409 76 560 104 458 7 998 136
Test 8299 779 1319 935 153 1315 108 2247 172 483 104 660 167 617 10 1089 158

评估

以下表格总结了模型整体以及每个类别获得的得分。

entity precision recall f1-score support
Date 0.961881 0.971759 0.966794 779.0
Location 0.963047 0.968158 0.965595 1319.0
Miscellaneous 0.884946 0.880214 0.882574 935.0
Money 0.980132 0.967320 0.973684 153.0
Organization 0.924300 0.928517 0.926404 1315.0
Percent 1.000000 1.000000 1.000000 108.0
Person 0.978591 0.976413 0.977501 2247.0
Time 0.965116 0.965116 0.965116 172.0
micro avg 0.951258 0.952476 0.951866 7028.0
macro avg 0.957252 0.957187 0.957209 7028.0
weighted avg 0.951237 0.952476 0.951849 7028.0

如何使用

您可以使用Transformers NER管道来使用此模型。

安装要求

pip install transformers

如何使用管道进行预测

from transformers import AutoTokenizer
from transformers import AutoModelForTokenClassification  # for pytorch
from transformers import TFAutoModelForTokenClassification  # for tensorflow
from transformers import pipeline


model_name_or_path = "m3hrdadfi/icelandic-ner-roberta" 
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForTokenClassification.from_pretrained(model_name_or_path)  # Pytorch
# model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path)  # Tensorflow

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Kristin manneskja getur ekki lagt frásagnir af Jesú Kristi á hilluna vegna þess að hún sé búin að lesa þær ."

ner_results = nlp(example)
print(ner_results)

有问题吗?

IcelandicNER Issues 存储库上发布Github问题。