模型:
mbazaNLP/Whisper-Small-Kinyarwanda
这个模型是在开放AI的Whisper-Small模型上,使用基于基音库的正则化自回归函数进行微调得到的,用于Kinyarwanda的常见语音数据集。通过在Swahili语言之上进行微调来添加Kinyarwanda语言。模型实现了24的字错误率(WER)。目前,它不提供Kinyarwanda到英文的翻译。
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("mbazaNLP/Whisper-Small-Kinyarwanda") >>> model = WhisperForConditionalGeneration.from_pretrained("mbazaNLP/Whisper-Small-Kinyarwanda") >>> ds = load_dataset("common_voice", "rw", split="test", streaming=True) >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> input_speech = next(iter(ds))["audio"]["array"] >>> model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language = "sw", task = "transcribe") >>> input_features = processor(input_speech, return_tensors="pt").input_features >>> predicted_ids = model.generate(input_features) >>> transcription = processor.batch_decode(predicted_ids) ['<|startoftranscript|><|sw|><|transcribe|><|notimestamps|>Abamugariye ku rugamba bafashwa kubona insimburangingo<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True) ['Abamugariye ku rugamba bafashwa kubona insimburangingo']