模型:
megantosh/flair-arabic-multi-ner
任务:
标记分类许可:
apache-2.0训练进行了94个时期,使用了线性衰减学习速率为2e-05,从0.225开始,并且使用了32批次的GloVe和Flair前向和后向嵌入。
Named Entity Type | True Posititves | False Positives | False Negatives | Precision | Recall | class-F1 | |
---|---|---|---|---|---|---|---|
LOC | Location | 539 | 51 | 68 | 0.9136 | 0.8880 | 0.9006 |
MISC | Miscellaneous | 408 | 57 | 89 | 0.8774 | 0.8209 | 0.8482 |
ORG | Organisation | 167 | 43 | 64 | 0.7952 | 0.7229 | 0.7574 |
PER | Person (no title) | 501 | 65 | 60 | 0.8852 | 0.8930 | 0.8891 |
from flair.data import Sentence from flair.models import SequenceTagger import pyarabic.araby as araby from icecream import ic tagger = SequenceTagger.load("julien-c/flair-ner") arTagger = SequenceTagger.load('megantosh/flair-arabic-multi-ner') sentence = Sentence('George Washington went to Washington .') arSentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .') # predict NER tags tagger.predict(sentence) arTagger.predict(arSentence) # print sentence with predicted tags ic(sentence.to_tagged_string) ic(arSentence.to_tagged_string)
2021-07-07 14:30:59,649 loading file /Users/mega/.flair/models/flair-ner/f22eb997f66ae2eacad974121069abaefca5fe85fce71b49e527420ff45b9283.941c7c30b38aef8d8a4eb5c1b6dd7fe8583ff723fef457382589ad6a4e859cfc 2021-07-07 14:31:04,654 loading file /Users/mega/.flair/models/flair-arabic-multi-ner/c7af7ddef4fdcc681fcbe1f37719348afd2862b12aa1cfd4f3b93bd2d77282c7.242d030cb106124f7f9f6a88fb9af8e390f581d42eeca013367a86d585ee6dd6 ic| sentence.to_tagged_string: <bound method Sentence.to_tagged_string of Sentence: "George Washington went to Washington ." [− Tokens: 6 − Token-Labels: "George <B-PER> Washington <E-PER> went to Washington <S-LOC> ."]> ic| arSentence.to_tagged_string: <bound method Sentence.to_tagged_string of Sentence: "عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة ." [− Tokens: 11 − Token-Labels: "عمرو <B-PER> عادلي <I-PER> أستاذ للاقتصاد السياسي المساعد في الجامعة <B-ORG> الأمريكية <I-ORG> بالقاهرة <B-LOC> ."]> ic| entity: <PER-span (1,2): "George Washington"> ic| entity: <LOC-span (5): "Washington"> ic| entity: <PER-span (1,2): "عمرو عادلي"> ic| entity: <ORG-span (8,9): "الجامعة الأمريكية"> ic| entity: <LOC-span (10): "بالقاهرة"> ic| sentence.to_dict(tag_type='ner'): {"text":"عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .", "labels":[], {"entities":[{{{ "text":"عمرو عادلي", "start_pos":0, "end_pos":10, "labels":[PER (0.9826)]}, {"text":"الجامعة الأمريكية", "start_pos":45, "end_pos":62, "labels":[ORG (0.7679)]}, {"text":"بالقاهرة", "start_pos":64, "end_pos":72, "labels":[LOC (0.8079)]}]} "text":"George Washington went to Washington .", "labels":[], "entities":[{ {"text":"George Washington", "start_pos":0, "end_pos":17, "labels":[PER (0.9968)]}, {"text":"Washington""start_pos":26, "end_pos":36, "labels":[LOC (0.9994)]}}]}
SequenceTagger( (embeddings): StackedEmbeddings( (list_embedding_0): WordEmbeddings('glove') (list_embedding_1): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) (list_embedding_2): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (embedding2nn): Linear(in_features=4196, out_features=4196, bias=True) (rnn): LSTM(4196, 256, batch_first=True, bidirectional=True) (linear): Linear(in_features=512, out_features=15, bias=True) (beta): 1.0 (weights): None (weight_tensor) None
由于从右到左在从左到右的上下文中,可能会出现一些格式错误。您的代码可能会出现 this 等错误(2020-10-27访问的链接)
如果您使用了这个模型,请考虑引用 this work :
@unpublished{MMHU21 author = "M. Megahed", title = "Sequence Labeling Architectures in Diglossia", year = {2021}, doi = "10.13140/RG.2.2.34961.10084" url = {https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects} }