模型:
microsoft/prophetnet-large-uncased
预训练模型权重为 ProphetNet . ProphetNet是一种用于序列到序列学习的新型预训练语言模型,具有一种称为未来n-gram预测的新颖自监督目标。ProphetNet能够使用n个流解码器预测更多未来的标记。原始实现是Fairseq版本,位于 github repo 。
这个预训练模型可以在序列到序列任务上进行微调。例如,可以按照以下方式对其进行标题生成训练:
from transformers import ProphetNetForConditionalGeneration, ProphetNetTokenizer model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") input_str = "the us state department said wednesday it had received no formal word from bolivia that it was expelling the us ambassador there but said the charges made against him are `` baseless ." target_str = "us rejects charges against its ambassador in bolivia" input_ids = tokenizer(input_str, return_tensors="pt").input_ids labels = tokenizer(target_str, return_tensors="pt").input_ids loss = model(input_ids, labels=labels).loss
@article{yan2020prophetnet, title={Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training}, author={Yan, Yu and Qi, Weizhen and Gong, Yeyun and Liu, Dayiheng and Duan, Nan and Chen, Jiusheng and Zhang, Ruofei and Zhou, Ming}, journal={arXiv preprint arXiv:2001.04063}, year={2020} }