模型:
microsoft/swin-base-patch4-window7-224
Swin Transformer模型在分辨率为224x224的ImageNet-1k上进行了训练。它是由Liu等人在 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 中提出并首次发布的。
免责声明:发布Swin Transformer的团队未为该模型撰写模型卡片,因此此模型卡片是由Hugging Face团队撰写的。
Swin Transformer是一种Vision Transformer类型。通过在较深层级中合并图像块(以灰色显示)来构建分层特征图,并且由于仅在每个局部窗口(以红色显示)进行自注意计算,它具有与输入图像尺寸线性计算复杂性。因此,它可以作为图像分类和密集识别任务的通用骨干。相比之下,先前的Vision Transformer生成单一低分辨率的特征图,并且由于全局自注意计算而具有与输入图像尺寸的二次计算复杂性。
您可以使用原始模型进行图像分类。查看 model hub 以查找您感兴趣的任务上的微调版本。
以下是如何使用此模型将COCO 2017数据集中的图像分类为1,000个ImageNet类别之一的示例:
from transformers import AutoFeatureExtractor, SwinForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-base-patch4-window7-224") model = SwinForImageClassification.from_pretrained("microsoft/swin-base-patch4-window7-224") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])
更多代码示例,请参阅 documentation
@article{DBLP:journals/corr/abs-2103-14030, author = {Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo}, title = {Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, journal = {CoRR}, volume = {abs/2103.14030}, year = {2021}, url = {https://arxiv.org/abs/2103.14030}, eprinttype = {arXiv}, eprint = {2103.14030}, timestamp = {Thu, 08 Apr 2021 07:53:26 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-14030.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }