模型:
microsoft/tapex-base-finetuned-wtq
TAPEX是由Qian Liu,Bei Chen,Jiaqi Guo,Morteza Ziyadi,Zeqi Lin,Weizhu Chen,Jian-Guang Lou于 TAPEX: Table Pre-training via Learning a Neural SQL Executor 提出的。原始repo可以在 here 中找到。
TAPEX(Table Pre-training via Execution)是一种概念简单而实证强大的预训练方法,可以为现有模型赋予表格推理能力。TAPEX通过学习一个神经SQL执行器来实现表格预训练,该执行器是通过自动生成可执行的SQL查询来获得的一个合成语料库。
TAPEX基于BART架构,即具有双向(类似BERT的)编码器和自回归(类似GPT的)解码器的变压器编码器-编码器(seq2seq)模型。
这个模型是在 WikiTableQuestions 数据集上微调的tapex-base模型。
您可以使用该模型来回答关于复杂问题的表格问题。下面显示了一些可解答的问题(对应的表格未显示):
Question | Answer |
---|---|
according to the table, what is the last title that spicy horse produced? | Akaneiro: Demon Hunters |
what is the difference in runners-up from coleraine academical institution and royal school dungannon? | 20 |
what were the first and last movies greenstreet acted in? | The Maltese Falcon, Malaya |
in which olympic games did arasay thondike not finish in the top 20? | 2012 |
which broadcaster hosted 3 titles but they had only 1 episode? | Channel 4 |
以下是在transformers中使用此模型的方法:
from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-base-finetuned-wtq") model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-base-finetuned-wtq") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) # tapex accepts uncased input since it is pre-trained on the uncased corpus query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008.0']
请查找评估脚本 here 。
@inproceedings{ liu2022tapex, title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor}, author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=O50443AsCP} }