模型:
microsoft/xlm-align-base
XLM-Align (ACL 2021, paper , repo , model )通过自标注的单词对齐来改善预训练的跨语言语言模型
XLM-Align是一个预训练的跨语言语言模型,支持94种语言。在我们的 paper 中查看详细信息。
model = AutoModel.from_pretrained("microsoft/xlm-align-base")
XTREME跨语言理解任务:
Model | POS | NER | XQuAD | MLQA | TyDiQA | XNLI | PAWS-X | Avg |
---|---|---|---|---|---|---|---|---|
XLM-R_base | 75.6 | 61.8 | 71.9 / 56.4 | 65.1 / 47.2 | 55.4 / 38.3 | 75.0 | 84.9 | 66.4 |
XLM-Align | 76.0 | 63.7 | 74.7 / 59.0 | 68.1 / 49.8 | 62.1 / 44.8 | 76.2 | 86.8 | 68.9 |
b9d214025837250ede2f69c9385f812c config.json 6005db708eb4bab5b85fa3976b9db85b pytorch_model.bin bf25eb5120ad92ef5c7d8596b5dc4046 sentencepiece.bpe.model eedbd60a7268b9fc45981b849664f747 tokenizer.json
联系人:chizewen@outlook.com
BibTeX:
@inproceedings{xlmalign, title = "Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment", author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei}, booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.265", doi = "10.18653/v1/2021.acl-long.265", pages = "3418--3430",}