模型:
model-attribution-challenge/DialoGPT-large
DialoGPT是一个最新的大规模预训练对话生成模型,用于多轮对话。 human evaluation results 表明DialoGPT生成的回复在单轮对话图灵测试下与人类回复质量相当。该模型是使用来自Reddit讨论主题的147M多轮对话进行训练的。
Role | Response |
---|---|
User | Does money buy happiness? |
Bot | Depends how much money you spend on it . |
User | What is the best way to buy happiness ? |
Bot | You just have to be a millionaire by your early 20s, then you can be happy . |
User | This is so difficult ! |
Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money |
请查看关于DialoGPT的预处理、训练和详细信息的 original DialoGPT repository 。
ArXiv论文: https://arxiv.org/abs/1911.00536
现在我们可以尝试一下将该模型作为交谈伙伴的工作方式!
from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))