模型:
neulab/omnitab-large-1024shot-finetuned-wtq-1024shot
OmniTab是一个基于表格的问答模型,提出于 OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering 。原始Github仓库为 https://github.com/jzbjyb/OmniTab 。
neulab/omnitab-large-1024shot-finetuned-wtq-1024shot(基于BART架构)以neulab/omnitab-large-1024shot为初始化,在 WikiTableQuestions 的1024-shot环境中进行了微调。
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-1024shot-finetuned-wtq-1024shot") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-1024shot-finetuned-wtq-1024shot") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008']
@inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", }