模型:
neulab/omnitab-large-finetuned-wtq
OmniTab是一个基于表格的QA模型,于 OmniTab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering 年提出。原始的Github存储库为 https://github.com/jzbjyb/OmniTab 。
neulab/omnitab-large-finetuned-wtq(基于BART架构)是在neulab/omnitab-large的基础上初始化,并在 WikiTableQuestions 上进行了微调。
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import pandas as pd tokenizer = AutoTokenizer.from_pretrained("neulab/omnitab-large-finetuned-wtq") model = AutoModelForSeq2SeqLM.from_pretrained("neulab/omnitab-large-finetuned-wtq") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) query = "In which year did beijing host the Olympic Games?" encoding = tokenizer(table=table, query=query, return_tensors="pt") outputs = model.generate(**encoding) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008']
@inproceedings{jiang-etal-2022-omnitab, title = "{O}mni{T}ab: Pretraining with Natural and Synthetic Data for Few-shot Table-based Question Answering", author = "Jiang, Zhengbao and Mao, Yi and He, Pengcheng and Neubig, Graham and Chen, Weizhu", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", }