BERTimbau Large 是一个预训练的用于巴西葡萄牙语的BERT模型,在三个下游自然语言处理任务(命名实体识别、句子文本相似度和文本蕴含识别)上取得了最先进的性能。它有两种大小可供选择:Base和Large。
对于更多信息或请求,请访问 BERTimbau repository 。
Model | Arch. | #Layers | #Params |
---|---|---|---|
neuralmind/bert-base-portuguese-cased | BERT-Base | 12 | 110M |
neuralmind/bert-large-portuguese-cased | BERT-Large | 24 | 335M |
from transformers import AutoTokenizer # Or BertTokenizer from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads from transformers import AutoModel # or BertModel, for BERT without pretraining heads model = AutoModelForPreTraining.from_pretrained('neuralmind/bert-large-portuguese-cased') tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-large-portuguese-cased', do_lower_case=False)
from transformers import pipeline pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('Tinha uma [MASK] no meio do caminho.') # [{'score': 0.5054386258125305, # 'sequence': '[CLS] Tinha uma pedra no meio do caminho. [SEP]', # 'token': 5028, # 'token_str': 'pedra'}, # {'score': 0.05616172030568123, # 'sequence': '[CLS] Tinha uma curva no meio do caminho. [SEP]', # 'token': 9562, # 'token_str': 'curva'}, # {'score': 0.02348282001912594, # 'sequence': '[CLS] Tinha uma parada no meio do caminho. [SEP]', # 'token': 6655, # 'token_str': 'parada'}, # {'score': 0.01795753836631775, # 'sequence': '[CLS] Tinha uma mulher no meio do caminho. [SEP]', # 'token': 2606, # 'token_str': 'mulher'}, # {'score': 0.015246033668518066, # 'sequence': '[CLS] Tinha uma luz no meio do caminho. [SEP]', # 'token': 3377, # 'token_str': 'luz'}]
import torch model = AutoModel.from_pretrained('neuralmind/bert-large-portuguese-cased') input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens # encoded.shape: (8, 1024) # tensor([[ 1.1872, 0.5606, -0.2264, ..., 0.0117, -0.1618, -0.2286], # [ 1.3562, 0.1026, 0.1732, ..., -0.3855, -0.0832, -0.1052], # [ 0.2988, 0.2528, 0.4431, ..., 0.2684, -0.5584, 0.6524], # ..., # [ 0.3405, -0.0140, -0.0748, ..., 0.6649, -0.8983, 0.5802], # [ 0.1011, 0.8782, 0.1545, ..., -0.1768, -0.8880, -0.1095], # [ 0.7912, 0.9637, -0.3859, ..., 0.2050, -0.1350, 0.0432]])
如果您使用了我们的作品,请引用:
@inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} }