模型:
nguyenvulebinh/envibert
该RoBERTa版本是通过使用100GB的文本(50GB的越南语和50GB的英语)进行训练的,因此被命名为envibert。模型架构针对生产进行了定制,因此只包含70M个参数。
from transformers import RobertaModel from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader import os cache_dir='./cache' model_name='nguyenvulebinh/envibert' def download_tokenizer_files(): resources = ['envibert_tokenizer.py', 'dict.txt', 'sentencepiece.bpe.model'] for item in resources: if not os.path.exists(os.path.join(cache_dir, item)): tmp_file = hf_bucket_url(model_name, filename=item) tmp_file = cached_path(tmp_file,cache_dir=cache_dir) os.rename(tmp_file, os.path.join(cache_dir, item)) download_tokenizer_files() tokenizer = SourceFileLoader("envibert.tokenizer", os.path.join(cache_dir,'envibert_tokenizer.py')).load_module().RobertaTokenizer(cache_dir) model = RobertaModel.from_pretrained(model_name,cache_dir=cache_dir) # Encode text text_input = 'Đại học Bách Khoa Hà Nội .' text_ids = tokenizer(text_input, return_tensors='pt').input_ids # tensor([[ 0, 705, 131, 8751, 2878, 347, 477, 5, 2]]) # Extract features text_features = model(text_ids) text_features['last_hidden_state'].shape # torch.Size([1, 9, 768]) len(text_features['hidden_states']) # 7
@inproceedings{nguyen20d_interspeech, author={Thai Binh Nguyen and Quang Minh Nguyen and Thi Thu Hien Nguyen and Quoc Truong Do and Chi Mai Luong}, title={{Improving Vietnamese Named Entity Recognition from Speech Using Word Capitalization and Punctuation Recovery Models}}, year=2020, booktitle={Proc. Interspeech 2020}, pages={4263--4267}, doi={10.21437/Interspeech.2020-1896} }
当我们的存储库被用于帮助产生发表的结果或被纳入其他软件时,请引用我们的存储库。
nguyenvulebinh@gmail.com