模型:
nguyenvulebinh/wav2vec2-base-vi-vlsp2020
我们的模型使用了wav2vec2架构,在13000小时的越南YouTube音频(未标记数据)上进行了预训练,并在250小时标记的VLSP ASR数据集(16kHz采样的语音音频)上进行了微调。您可以在此处找到更多描述 here
1232321 | 1233321 | |
---|---|---|
without LM | 8.66 | 6.90 |
with 5-grams LM | 6.53 | 5.32 |
#pytorch #!pip install transformers==4.20.0 #!pip install https://github.com/kpu/kenlm/archive/master.zip #!pip install pyctcdecode==0.4.0 #!pip install huggingface_hub==0.10.0 from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader from transformers import Wav2Vec2ProcessorWithLM from IPython.lib.display import Audio import torchaudio import torch # Load model & processor model_name = "nguyenvulebinh/wav2vec2-base-vi-vlsp2020" model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name) processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Load an example audio (16k) audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="t2_0000006682.wav"))) input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt') # Infer output = model(**input_data) # Output transcript without LM print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy())) # Output transcript with LM print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text)
ASR模型参数仅供非商业用途,遵循知识共享署名-非商业性使用4.0国际许可协议。您可以在此处找到详细信息: https://creativecommons.org/licenses/by-nc/4.0/legalcode
nguyenvulebinh@gmail.com