这是一个模型:它将句子和段落映射到一个768维的稠密向量空间,并可用于聚类或语义搜索等任务。它派生自模型 dbmdz/bert-base-italian-xxl-uncased ,请查看其模型卡以获取更多信息。
当您安装了模型 sentence-transformers 后,使用该模型变得很简单:
pip install -U sentence-transformers
然后,您可以像这样使用该模型:
from sentence_transformers import SentenceTransformer sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."] model = SentenceTransformer('nickprock/sentence-bert-base-italian-xxl-uncased') embeddings = model.encode(sentences) print(embeddings)
如果没有模型 sentence-transformers ,您可以这样使用该模型:首先,将输入传递给转换模型,然后必须在上下文化的词嵌入之上应用正确的汇聚操作。
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['Una ragazza si acconcia i capelli.', 'Una ragazza si sta spazzolando i capelli.'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased') model = AutoModel.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
有关对该模型的自动评估,请参阅句子嵌入基准 https://seb.sbert.net 。
模型是使用以下参数进行训练的:
DataLoader:
torch.utils.data.dataloader.DataLoader,长度为360,参数如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()方法的参数:
{ "epochs": 10, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1500, "warmup_steps": 360, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )