模型:
nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2
任务:
特征提取许可:
apache-2.0这个模型(google/bert_uncased_L-2_H-128_A-2)是从头开始训练的,训练数据为:data.retriever.nq-adv-hn-train(facebookresearch/DPR)。在评估集上取得了以下结果:
评估数据集:来自官方DPR GitHub的facebook-dpr-dev-dataset
model_name | data_name | num of queries | num of passages | R@10 | R@20 | R@50 | R@100 | R@100 |
---|---|---|---|---|---|---|---|---|
nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our) | nq-dev dataset | 6445 | 199795 | 60.53% | 68.28% | 76.07% | 80.98% | 91.45% |
nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our) | nq-dev dataset | 6445 | 199795 | 65.43% | 71.99% | 79.03% | 83.24% | 92.11% |
*facebook/dpr-ctx_encoder-single-nq-base(hf/fb) | nq-dev dataset | 6445 | 199795 | 40.94% | 49.27% | 59.05% | 66.00% | 82.00% |
评估数据集:UKPLab/beir测试数据,但我们只使用了前20万条文档。
model_name | data_name | num of queries | num of passages | R@10 | R@20 | R@50 | R@100 | R@100 |
---|---|---|---|---|---|---|---|---|
nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2(our) | nq-test dataset | 3452 | 200001 | 49.68% | 59.06% | 69.40% | 75.75% | 89.28% |
nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2(our) | nq-test dataset | 3452 | 200001 | 51.62% | 61.09% | 70.10% | 76.07% | 88.70% |
*facebook/dpr-ctx_encoder-single-nq-base(hf/fb) | nq-test dataset | 3452 | 200001 | 32.93% | 43.74% | 56.95% | 66.30% | 83.92% |
注意:*表示我们在相同的评估数据集上进行评估。
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-12_H-128_A-2") q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-12_H-128_A-2") def get_title_text_combined(passage_dicts): res = [] for p in passage_dicts: res.append(tuple((p['title'], p['text']))) return res processed_passages = get_title_text_combined(passage_dicts) def extracted_passage_embeddings(processed_passages, model_config): passage_inputs = tokenizer.batch_encode_plus( processed_passages, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.passage_max_seq_len, return_token_type_ids=True ) passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), np.array(passage_inputs['attention_mask']), np.array(passage_inputs['token_type_ids'])], batch_size=512, verbose=1) return passage_embeddings passage_embeddings = extracted_passage_embeddings(processed_passages, model_config) def extracted_query_embeddings(queries, model_config): query_inputs = tokenizer.batch_encode_plus( queries, add_special_tokens=True, truncation=True, padding="max_length", max_length=model_config.query_max_seq_len, return_token_type_ids=True ) query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), np.array(query_inputs['attention_mask']), np.array(query_inputs['token_type_ids'])], batch_size=512, verbose=1) return query_embeddings query_embeddings = extracted_query_embeddings(queries, model_config)
训练过程中使用了以下超参数: