模型:
nvidia/segformer-b1-finetuned-ade-512-512
SegFormer模型在512x512分辨率下在ADE20k数据集上微调。该模型由Xie等人在论文 SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers 中提出,并在 this repository 中首次发布。
免责声明:释放SegFormer团队未为此模型撰写模型卡片,因此此模型卡片由Hugging Face团队撰写。
SegFormer由分层Transformer编码器和轻量级全连接多层感知机解码头组成,可以在ADE20k和Cityscapes等语义分割基准上取得良好的结果。分层Transformer首先在ImageNet-1k上进行预训练,然后将解码头添加并在下游数据集上进行整体微调。
您可以使用原始模型进行语义分割。查看 model hub 以查找您感兴趣的任务的微调版本。
以下是如何使用此模型将COCO 2017数据集的图像分类为1,000个ImageNet类别之一:
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-ade-512-512") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
有关更多代码示例,请参阅 documentation 。
@article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }