模型:
nvidia/segformer-b1-finetuned-cityscapes-1024-1024
SegFormer模型在分辨率为1024x1024的CityScapes上进行了微调。它由Xie等人在论文《 SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers 》中提出,并在《 this repository 》中首次发布。
免责声明:发布SegFormer的团队没有为这个模型撰写模型卡片,因此此模型卡片是由Hugging Face团队撰写的。
SegFormer由一个分层Transformer编码器和一个轻量级的全MLP解码头组成,可在ADE20K和Cityscapes等语义分割基准上取得出色的结果。分层Transformer首先在ImageNet-1k上进行预训练,然后添加解码头,并在下游数据集上进行整体微调。
您可以使用原始模型进行语义分割。请查看《 model hub 》以寻找您感兴趣的任务的微调版本。
您可以按照以下步骤使用此模型将COCO 2017数据集的图像分类为1,000个ImageNet类别之一:
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
有关更多代码示例,请参阅《 documentation 》。
可以在《 here 》中找到此模型的许可证。
@article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }