模型:

nvidia/segformer-b2-finetuned-ade-512-512

英文

SegFormer (b2大小) 模型在ADE20k上进行了微调

SegFormer模型在分辨率为512x512的ADE20k数据集上进行了微调。该模型最初由Xie等人在论文 SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers 中提出,并在 this repository 中首次发布。

免责声明:发布SegFormer模型的团队没有为这个模型编写模型卡片,所以这个模型卡片是由Hugging Face团队编写的。

模型描述

SegFormer包括一个层次化的Transformer编码器和一个轻量级的全MLP解码头,可以在ADE20K和Cityscapes等语义分割基准上取得出色的结果。层次化Transformer首先在ImageNet-1k上进行预训练,之后添加解码头,并在下游数据集上进行整体微调。

使用方法和限制

您可以使用原始模型进行语义分割。请参考 model hub 查找您感兴趣的任务的微调版本。

如何使用

下面是如何使用该模型将COCO 2017数据集中的图像分类为1,000个ImageNet类别之一的示例:

from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests

feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits  # shape (batch_size, num_labels, height/4, width/4)

关于更多代码示例,我们参考 documentation

BibTeX条目和引用信息

@article{DBLP:journals/corr/abs-2105-15203,
  author    = {Enze Xie and
               Wenhai Wang and
               Zhiding Yu and
               Anima Anandkumar and
               Jose M. Alvarez and
               Ping Luo},
  title     = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
               Transformers},
  journal   = {CoRR},
  volume    = {abs/2105.15203},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.15203},
  eprinttype = {arXiv},
  eprint    = {2105.15203},
  timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}