模型:
optimum/distilbert-base-uncased-mnli
This is the uncased DistilBERT model fine-tuned on Multi-Genre Natural Language Inference (MNLI) dataset for the zero-shot classification task. The model is not case-sensitive, i.e., it does not make a difference between "english" and "English".
Training is done on a p3.2xlarge AWS EC2 instance (1 NVIDIA Tesla V100 GPUs), with the following hyperparameters:
$ run_glue.py \ --model_name_or_path distilbert-base-uncased \ --task_name mnli \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 2e-5 \ --num_train_epochs 5 \ --output_dir /tmp/distilbert-base-uncased_mnli/
Task | MNLI | MNLI-mm |
---|---|---|
82.0 | 82.0 |