模型:
optimum/roberta-base-squad2
注意:这是模型的第2个版本。有关我们更新的说明,请参见 FARM 存储库中的 this github issue 。如果您想使用第1个版本,在 Transformers 3.5 中加载模型时,请指定 revision="v1.0" 。例如:
model_name = "deepset/roberta-base-squad2" pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
语言模型:roberta-base 语言:英语 下游任务:抽取式问答 训练数据:SQuAD 2.0 评估数据:SQuAD 2.0 代码:请参见 FARM 中的 example 基础设施:4x Tesla v100
batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64
请注意,我们还发布了这个模型的蒸馏版本,称为 deepset/tinyroberta-squad2 。蒸馏模型具有相当的预测质量,并且运行速度是基础模型的两倍。
使用 official eval script 对 SQuAD 2.0 开发集进行评估。
"exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name)
from farm.modeling.adaptive_model import AdaptiveModel from farm.modeling.tokenization import Tokenizer from farm.infer import Inferencer model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = Inferencer.load(model_name, task_type="question_answering") QA_input = [{"questions": ["Why is model conversion important?"], "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}] res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True) # b) Load model & tokenizer model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering") tokenizer = Tokenizer.load(model_name)
如果要对大规模的问题进行问答(而不是单个段落),您还可以在 haystack 中加载模型:
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
Branden Chan: branden.chan[at]deepset.ai Timo Möller: timo.moeller[at]deepset.ai Malte Pietsch: malte.pietsch[at]deepset.ai Tanay Soni: tanay.soni[at]deepset.ai
我们通过开源将 NLP 技术带给行业!我们的重点:面向特定行业的语言模型和大规模问答系统。
我们的一些工作:
联系我们: Twitter | LinkedIn | Slack | GitHub Discussions | Website
顺便说一下: we're hiring!