模型:
optimum/segformer-b0-finetuned-ade-512-512
SegFormer model fine-tuned on ADE20k at resolution 512x512. It was introduced in the paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers by Xie et al. and first released in this repository .
Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team.
SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
You can use the raw model for semantic segmentation. See the model hub to look for fine-tuned versions on a task that interests you.
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
from transformers import SegformerImageProcessor from PIL import Image import requests from optimum.onnxruntime import ORTModelForSemanticSegmentation image_processor = SegformerImageProcessor.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512") model = ORTModelForSemanticSegmentation.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = image_processor(images=image, return_tensors="pt").to(device) outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
If you use pipeline:
from transformers import SegformerImageProcessor, pipeline from optimum.onnxruntime import ORTModelForSemanticSegmentation image_processor = SegformerImageProcessor.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512") model = ORTModelForSemanticSegmentation.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512") url = "http://images.cocodataset.org/val2017/000000039769.jpg" pipe = pipeline("image-segmentation", model=model, feature_extractor=image_processor) pred = pipe(url)
For more code examples, we refer to the Optimum documentation .
The license for this model can be found here .
@article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }