模型:
philschmid/bart-base-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
You can find the notebook here and the referring blog post here .
For more information look at:
{ "dataset_name": "samsum", "do_eval": true, "do_train": true, "fp16": true, "learning_rate": 5e-05, "model_name_or_path": "facebook/bart-base", "num_train_epochs": 3, "output_dir": "/opt/ml/model", "per_device_eval_batch_size": 8, "per_device_train_batch_size": 8, "seed": 7 }
key | value |
---|---|
epoch | 3 |
init_mem_cpu_alloc_delta | 180190 |
init_mem_cpu_peaked_delta | 18282 |
init_mem_gpu_alloc_delta | 558658048 |
init_mem_gpu_peaked_delta | 0 |
train_mem_cpu_alloc_delta | 6658519 |
train_mem_cpu_peaked_delta | 642937 |
train_mem_gpu_alloc_delta | 2267624448 |
train_mem_gpu_peaked_delta | 10355728896 |
train_runtime | 98.4931 |
train_samples | 14732 |
train_samples_per_second | 3.533 |
key | value |
---|---|
epoch | 3 |
eval_loss | 1.5356481075286865 |
eval_mem_cpu_alloc_delta | 659047 |
eval_mem_cpu_peaked_delta | 18254 |
eval_mem_gpu_alloc_delta | 0 |
eval_mem_gpu_peaked_delta | 300285440 |
eval_runtime | 0.3116 |
eval_samples | 818 |
eval_samples_per_second | 2625.337 |
from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/bart-base-samsum") conversation = '''Jeff: Can I train a ? Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' nlp(conversation)